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subcellular compartments: a validation study†
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A major promise of Raman microscopy is the label-free detailed recognition of cellular and subcellular

structures. To this end, identifying colocalization patterns between Raman spectral images and fluor-

escence microscopic images is a key step to annotate subcellular components in Raman spectroscopic

images. While existing approaches to resolve subcellular structures are based on fluorescence labeling,

we propose a combination of a colocalization scheme with subsequent training of a supervised classifier

that allows label-free resolution of cellular compartments. Our colocalization scheme unveils statistically

significant overlapping regions by identifying correlation between the fluorescence color channels and

clusters from unsupervised machine learning methods like hierarchical cluster analysis. The colocalization

scheme is used as a pre-selection to gather appropriate spectra as training data. These spectra are used in

the second part as training data to establish a supervised random forest classifier to automatically identify

lipid droplets and nucleus. We validate our approach by examining Raman spectral images overlaid with

fluorescence labelings of different cellular compartments, indicating that specific components may

indeed be identified label-free in the spectral image. A Matlab implementation of our colocalization soft-

ware is available at http://www.mathworks.de/matlabcentral/fileexchange/46608-frcoloc.

1. Introduction

Identifying overlapping observations between different micro-
scopic images of one and the same sample has been a recur-
rent topic in microscopic image analysis. While corresponding
approaches to identify colocalization patterns between two
fluorescence microscopic images are well-established,1,2 there
are essentially no established approaches for advanced micro-
scopic setups where samples are measured across different
types of microscopes. Yet, cross-microscopy-platform studies
are gaining popularity and relevance. One setting where cross-
platform image analysis takes an important role is the combi-
nation of Raman microscopy with fluorescence microscopy in
order to obtain a label-free protocol to resolve subcellular com-
partments of cultured cells.3 A similar setting is found in
studies combining other types of vibrational microscopy such
as coherent anti-Stokes Raman scattering (CARS)4 or infrared
(IR) microscopy5 with either fluorescence or brightfield
microscopy. In these applications, correlating observations

between vibrational spectroscopic images and fluorescence or
histopathological staining images is required to obtain train-
ing data for supervised classifiers, which allow to resolve com-
partments of cellular or tissue material without labeling, using
only vibrational microscopy.

The main step for the colocalization task is to use fluo-
rescence as a means of “annotation” of spectral images, so
that representative reference spectra of different cellular com-
partments can be collected based on an overlay between a
Raman image and a fluorescence microscopic image. These
reference spectra can subsequently be used for training a
supervised classifier4 or interpolating contributions of
different compartments to an observed location spectrum.3

Obtaining suitable reference spectra, however, turns out to be
a delicate task. A naive approach would be to use spectra from
all positions where the fluorescence intensity exceeds a suit-
able threshold value. However, this would produce a hetero-
geneous data set for several reasons. This may for instance
result from small differences in the z-layer between fluo-
rescence and Raman image, and leads to an imperfect overlay
that generally cannot be compensated. Also, differences in
confocal volume lead to slight morphological differences
between the fluorescence image and the Raman spectral
image. To compensate these shortcomings and obtain
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consistent spectra to train supervised classifiers, one can pre-
segment the spectral image, aiming to identify a segment that
has the best possible overlap with the above-threshold posi-
tions in the fluorescence image.

In this work, we present a systematic computational
approach to utilize colocalization across different microscopy
platforms. This colocalization approach yields supervised clas-
sifiers, for which we introduce an appropriate validation
measure, which allows us to systematically assess the robust-
ness across a larger set of samples. Our approach utilizes ideas
developed in the context of analyzing colocalization between
two fluorescence images. Based on presegmentations, our
colocalization procedure naturally carries to constellations
involving other combinations of microscopes.

Our reference application of resolving the subcellular
organization of cells is an important foundation for studying
the function of proteins, with applications ranging from iden-
tifying disease related location patterns6–8 to the characteri-
zation of drug response.9 While the gold standard for
identifying cell organelles is fluorescence microscopy,10 label-
free approaches based on Raman3 or CARS4 microscopy
promise to overcome the need for fluorescently labeling of the
sample under consideration. In this contribution, we present a
systematic validation of such colocalization studies between
vibrational microspectroscopic and fluorescence microscopic
images. While one variant of this method has been investi-
gated previously,4 the present contribution provides a more
general approach to colocalization involving different colocali-
zation measures including a quantitative comparison of these
measures. As a guiding example for our study, we investigate
the fully automated identification of nuclei and lipid droplets
(LD) in colon and pancreatic cancer cell lines. The knowledge
about these two organelles is valuable, because their size,
morphology, and amount can be signs of cancer and
infections.11–14

1.1. Segmentation of Raman microscopic images

Raman microscopy allows to characterize cell or tissue
samples with a pixel resolution of few hundred nano meters,
where each pixel location is represented by a Raman emission
spectrum. Biologically or chemically relevant information is
commonly obtained by high dimensional data analysis of the
pixel spectra using techniques such as supervised and un-
supervised learning or factorization methods.

Using Raman (and also CARS) microscopy to resolve
different parts of subcellular architecture has proven success-
ful in several studies,3,4,15–17 based on a large choice of either
clustering approaches or interactive segmentation tools.18 In
order to obtain cellular images from the pixel spectra of a
microspectroscopic image Miljković et al.,16 compare methods
that segment the pixel spectra of one dataset into base classes,
and categorize the commonly employed approaches into crisp
clustering where each pixel is assigned one similarity class, and
soft clustering where each pixel spectrum is decomposed into a
mixture of several base spectra. Remarkably, the study by Milj-
ković et al.16 as well as most other studies investigate unsuper-

vised approaches in the sense that the observed spectra of one
dataset are partitioned into base classes. Which of the identi-
fied base classes corresponds to which cellular compartment
is then left to essentially subsequent visual inspection, e.g.
using fluorescence images of the same sample.

The first studies to shift from this unsupervised paradigm
to supervised approaches are provided by Klein et al.3 and
Bocklitz et al.19 Klein et al.3 systematically overlay a Raman
spectral image with fluorescence labelings of the same
sample. As each organelle to be identified is labeled by one
marker protein, they identify Raman spectral bands that are
most informative for one particular organelle by measuring
mutual information between spectral bands and fluorescence
intensities. These spectral bands are utilized in a supervised
learning spirit to infer a nonlinear interpolation function,
which can predict a fluorescence intensity from a given pixel
spectrum. This results in an intensity image in the spirit of a
soft clustering approach. Compared to unsupervised soft clus-
tering, and due to the supervised approach of inferring a pre-
diction function, the base class intensities can be assigned to
one cellular organelle. Furthermore, supervised approaches
were recently used to automatically identify colon tissue types
including adenocarcinoma in Raman spectral datasets,20 fol-
lowing an annotation-based approach as it is commonly
employed in IR microscopy based spectral histopathology.5,21

In the latter studies, random forests (RF) turned out to be con-
venient tools for supervised classification of both Raman and
IR spectra due to their simplicity and efficiency as well as their
robustness against overfitting.

While in a previous contribution4 a colocalization approach
was introduced to train supervised classifiers for resolving sub-
cellular architecture, our present contribution provides a sys-
tematic comparison between different correlation measures
for this approach, along with a cross-validation scheme that
provides a more realistic assessment of the classification
power than conventional cross-validation. As further contri-
butions of this work, we demonstrate that the colocalization
based training of supervised classifiers originally proposed for
CARS data in the above mentioned work also performs on
Raman spectral images, and assess classifiers for Raman
spectra, in particular with respect to different factors such as
subcellular organelle, cell type, and confounders.

Supervised classification for resolving subcellular structures
has been broadly investigated on the basis of morphological
features extracted from fluorescence images.9,22–24 An advan-
tage of combining label-free Raman microscopy with super-
vised classification is that once a supervised classifier has
been trained, it can be applied to new datasets to identify orga-
nelles without any fluorescence labeling or visual inspection
of either spectra or segmentations. At the same time, the accu-
racy of supervised classifiers can be quantified using well-
established methods. A complication introduced by Raman
microscopy is that both training and, more importantly,
validating these classifiers needs to deal with the presence of
hundreds or thousands of feature vectors for each component
in each cell (namely one vector for each pixel), whereas
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fluorescence microscopic images yield a single feature vector
for each cell and each fluorescence labeling. To deal with the
abundance of spectra for training classifiers, our approach
follows the procedure typically taken in spectral histopathology
to resolve tissue structure in tissue sections.5,21 In these
approaches, one first collects training spectra that are repre-
sentative for different tissue components. Then, based on
these spectra, a supervised classifier is trained. For the vali-
dation of Raman spectral classifiers, we use the concept of
leave-one-sample-out cross-validation, where all spectra from
one sample are assigned to either training or validation set.
This validation scheme facilitates a systematic assessment of
the robustness across a larger set of samples, whereas vali-
dation in previous studies was either limited to a single
sample19 or a small number of samples,3 lacking a comprehen-
sive validation measure.

As any supervised classification task, our approach involves
recruiting training data, which indeed constitutes the core of
our methodological approach. To obtain representative train-
ing spectra for different cellular compartments, we overlay the
spectral image with its fluorescence counterpart and perform
a certain colocalization analysis. For this colocalization ana-
lysis, we employ ideas that have been extensively and success-
fully utilized to determine and quantify colocalization between
two fluorescence images in previous studies.1,2,25–27 In our
setting, one of the two fluorescence images is replaced by a
presegmented version of the spectral image. As it is initially
unclear what presegmentation of the spectral image will
resolve a particular cellular compartment, we systematically
utilize the hierarchy yielded by hierarchical cluster analysis
(HCA), as illustrated in Fig. 1. Our approach to identify repre-
sentative spectra for one cellular compartment in fact reads as
identifying a branch in the HCA that exhibits the highest
degree of colocalization with the corresponding fluorescence
image.

1.2. Colocalization schemes

In order to quantify which area exhibits the highest degree
of colocalization between segments obtained by HCA and a
thresholded fluorescence image, we employ colocalization
schemes that have been established for measuring colocaliza-
tion between fluorescence images. Several such approaches
have been proposed in the past,1,25,26 as surveyed in Bolte and
Cordelieres.2 Among these measures, the Pearson correlation
coefficient (PCC) has gained significant popularity. The PCC is
defined as

PCC ¼
P

iðRi � RavgÞðGi � GavgÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
iðRi � RavgÞ2

P
iðGi � GavgÞ2

q ; ð1Þ

where Ri denotes the intensity of the first color channel (red)
at position i, and Ravg the average intensity of the red channel;
correspondingly, Gi and Gavg represent the pixel and average
intensities for the second color channel (green).

This motivates us to introduce the following procedure: for
every possible combination of a cluster and a color channel,

the degree of colocalization is calculated according to the PCC
(see Fig. 1). As every possible cluster from every level of the
dendrogram is checked for colocalization, the clusters with the
highest PCC found for the two or three color channels might
overlap, which means that they are sub- or supernodes of each
other. If this is the case, only the one with the highest value is
kept in this round and for the remaining color channels a new
cluster has to be found.

Note that the first cluster chosen may cover a large area of
the image, which may be much larger than the area covered by
fluorescence foreground. This may prevent the identification
of best matching clusters for other organelles. When assessing
the suitability of a colocalization measure, it will thus be of
crucial importance to determine the number of unidentifiable
clusters, which should be as small as possible for an appropri-
ate measure.

2. Methods
2.1. Experimental materials and methods

2.1.1. Cell culture. Human pancreatic cancer cells MIA
PaCa-2 (CRl-1420) as well as human colon adenocarcinmoa
cells HT29 (HTB-38) were obtained from the American Type
Culture Collection (kindly provided by Stefan Hahn’s labora-
tory at Ruhr University Bochum). They were treated as
described previously.4

2.1.2. Confocal Raman microscopy. Raman hyperspectral
data sets were acquired using a confocal Raman microscope

Fig. 1 Dendrogram from HCA including exemplary overlays of clusters
with the fluorescence color channel representing the nucleus. In the
cell overlay plots the overlay of cluster and fluorescence is shown in
yellow, the rest of the fluorescence in red, the rest of the cluster in
green and the rest of the cell (neither cluster nor fluorescence) in black.
(A) The best matching cluster (colocalized with a PCC of 0.89) shown in
a cell overlay plot and labeled in blue in the dendrogram. (B) The least
matching cluster (anti-colocalized with a PCC of −0.43) shown in a cell
overlay plot and labeled in orange in the dendrogram. (C) The last
cluster consisting of both the best and least matching clusters, barely
colocalized with a PCC of 0.11.

Paper Analyst

2362 | Analyst, 2015, 140, 2360–2368 This journal is © The Royal Society of Chemistry 2015

Pu
bl

is
he

d 
on

 0
9 

Fe
br

ua
ry

 2
01

5.
 D

ow
nl

oa
de

d 
by

 R
uh

r 
U

ni
ve

rs
ita

t B
oc

hu
m

 o
n 

17
/0

3/
20

15
 0

8:
20

:3
8.

 
View Article Online

http://dx.doi.org/10.1039/c4an02153c


(Alpha300AR, WITec Inc., Ulm, Germany) coupled to a fre-
quency doubled solid state laser operating at 532 nm (Nd:YAG,
max. 40 mW, Reno, USA), using a laser power of 10 mW. A
25 μm diameter single-mode optical fiber was used to couple
the laser radiation into a Zeiss microscope. The incident laser
beam was collimated via an achromatic lens and passed
through a holographic band-pass filter before being focused
into the sample through a 60×/1.00 NA water immersion objec-
tive (Nikon, Japan). The Raman scattered light is collected
with the same objective and passed through a holographic
edge filter onto a multi-mode optical fiber (50 μm diameter) to
a spectrometer equipped with a back-illuminated electron mul-
tiplying charge coupled device (emCCD) camera (1600 × 200
px) operating at −60 °C. The sample was located on a piezo-
electrically driven scanning stage. Raman data sets were
obtained by raster-scanning with a pixel size of 0.5 μm for
regions of around 60 μm × 60 μm and exposure time of 0.3 s
per pixel.

2.1.3. Fluorescence staining and imaging. After permeabi-
lization with 0.2% Triton X-100 for 5 min at room temperature,
the cells were washed with PBS and blocked with 1% bovine
serum albumin for 30 min. The cells were incubated for
10 min with LD540 (4,4-difluoro-2,3,5,6-bis-tetramethylene-4-
bora-3a,4a-diaza-s-indacene), washed with PBS-buffer and
incubated with 1,5-bis[2-(di-methylamino)ethyl]amino-4,8-
dihydroxyanthracene-9,10-dione (DRAQ-5; Cell Signaling Tech-
nology, Danvers, USA). The excess fluorescence dyes were
removed by PBS-buffer.

The fluorescence measurements were performed all the
time sequentially on double stained specimen with a confocal
laser scanning microscope (Leica TCS SP5 II) using a Leica
HCX IRAPO L (25×/0.95 W) water immersion objective. In
order to enable an optimal match with Raman images, stacks
of fluorescence images were recorded and the distance
between each layer was 0.5 μm.

2.2. Algorithms and data analysis

2.2.1. Preprocessing. Cosmic spikes were removed by
impulse noise filter28 and the spectra were interpolated to a
reference wavenumber scale. Further data analysis was per-
formed on the normalized data in the region between
700 cm−1 and 1800 cm−1 and between 2600 cm−1 and
3100 cm−1. Spectra from each image data set were hierarchi-
cally clustered based on Ward’s algorithm using Pearson’s cor-
relation distance to obtain a dendrogram.

The fluorescence images were scaled, clipped and manually
registered to the spectral images.

2.2.2. Colocalization scheme. After hierarchical clustering,
each branch in the dendrogram is associated with one area in
the spectral image comprising a group of similar spectra. For
each branch in the dendrogram, a colocalization index with
the foreground locations of each corresponding fluorescence
image was computed using PCC. The branch exhibiting the
highest colocalization index was considered the best matching
cluster, as formally defined in ESI 4.1.†

Training spectra were extracted from the best matching
cluster based on several post-processing steps, aiming on a
restriction of the training spectra area to a “condensed” core
region. First, 100 intensity thresholds were tested on the fluo-
rescence images ranging from 1% to 100% intensity. The
image was binarized by each of these thresholds, and the PCC
computed. The threshold achieving the highest PCC was kept
as the best colocalizing threshold. In other words, the HCA is
also utilized in order to find an optimal fluorescence threshold
for each fluorescence channel. With the binarized version of
the fluorescence and the best matching clusters, additional
enhancements are possible, starting with a connected com-
ponents filter: the number of nuclei in the image was given
and it is tested whether reducing the number of connected
components (keeping the biggest ones) to the number of
nuclei alters the degree of correlation (without deleting more
than half of the pixels). Then isolated pixels are filtered out by
grain filtering. Finally, lipid droplets were identified by their
specific marker band at wavenumber 1750 cm−1, and masked
out whenever they were not covered by corresponding fluo-
rescence foreground.

2.2.3. Implementation. All data processing was implemented
in MATLAB Version 8.2 along with the Image Processing and
Statistics toolboxes (The MathWorks, Natick, MA).

3. Results and discussion
3.1. Comparison of correlation coefficients

We compared the values of Pearson correlation coefficient
(PCC),25 Mander’s overlap coefficient (MOC),1 intensity corre-
lation quotient (ICQ),29 and mutual information (MI)3 on a
series of synthetic images involving two color channels
(referred to as red and green, respectively). The image series
starts with 0% overlap between the red and the green channel,
and overlap between the channels was gradually increased to
100%, see ESI Video 1† for an illustration. To illustrate the
effect of varying overlap on the different coefficients, binary
images were used, while relative intensities result in a similar
pattern (Data not shown). The results of these coefficients are
plotted against the percentage of red pixels overlapping with
green pixels (see Fig. 2A). The ratio of background versus fore-
ground pixels is 1 : 1, which leads to the desired effect that
every coefficient ranges from its minimal to its maximal poss-
ible value. While for the PCC and the ICQ, a negative value
indicates anti-colocalization, the MOC has no corresponding
anti-colocalization indicator as it yields only positive values,
which are identical to the percentage of overlap. The MI is also
limited to positive numbers. Furthermore, the image series
demonstrates a more severe disadvantage of MI, namely that it
does not differentiate between the overlap of foreground and
background pixels. In other words, the same MI value is
obtained for the same degree of colocalization and anti-
colocalization.

In a second series of synthetic images, the ratio of back-
ground versus foreground pixels was increased to 1000 : 1 (see
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Fig. 2B). This high proportion of background pixels, which is
realistic as far as small organelles inside cells are concerned,
produces very high ICQ values and very low MI values, making
them uninformative. The PCC, however, is sensitive to this
ratio, whereas MOC does not adapt at all when changing the
ratio, as it does not consider the probability of the
colocalization.

To confirm these findings on non-synthetic data, we investi-
gated an additional set of 75 Raman microscopic images with
fluorescence counterparts. Beside the nucleus, the corres-

ponding fluorescence images label two further organelles,
including 29 measurements with a combination of the endo-
plasmic reticulum (ER) and Golgi apparatus, 13 with ER and
mitochondria, 9 with Golgi and peroxisomes, 4 with mitochon-
dria and peroxisomes, and 20 with Golgi and mitochondria.
These membrane-rich organelles were used here instead of
lipid droplets as they are more challenging to differentiate4

due to their strong functional and physical connection. There-
fore, they are better suited than the more regular morphologi-
cal (and also spectral) patterns of lipid droplets to
demonstrate the differences of the four measures.

As it turns out, the differences between colocalization
measures are reflected by the number of samples in which it
was not possible to collect training data for at least one of the
labeled organelles represented by a fluorescence color
channel, because the better matching organelles did not leave
enough unmatched area in the HCA for the lesser matching
ones. For PCC, this was the case in 29 out of the 75 images
(38.6%). On using the MI, this number of organelles without
training data rose to 43 (57.3%), with the ICQ it was 50
(66.7%) and for the MOC even 61 (81.3%).

This issue is more or less pronounced for different combi-
nations of organelles, where the worst case occurs for ER
with Golgi, which are both parts of the endomembrane
system. Here, in 55.2% of the images training data cannot be
found using the best method (PCC), while it is even 93.1%
using MOC. These numbers can be explained by the average
size of the best matching clusters found by the different
measures: 625 pixels by PCC, 652 by MI, 666 by ICQ and 729
by MOC. On average the biggest cluster (the nucleus) is four
times bigger than the next biggest organelle when identified
by the PCC, but six times bigger when selected by the MOC.
Identifying too large areas as the best matching cluster for
the organelle affects identification of best matching clusters
of the smaller organelles, as the matching clusters already
occupy a (too) large area for the nucleus cluster. This
problem becomes particularly obvious for MOC, as its value
is determined only by the amount of overlap without taking
into account background at all. This behavior favors the
identification of larger overlapping areas than the PCC does,
where a simultaneous reduction of the two overlapping areas
(while keeping the percentage of overlap) increases the value
of the coefficient, while it does not change the MOC. While
this property of MOC may be desirable under other circum-
stances, it is inadequate in the context of determining best-
matching clusters.

It is important to notice that the effect of unidentified best
matching clusters is not represented in the validation of super-
vised classifiers, as no training data to be (mis-)classified will
be contributed to the training data set. This implies that when
assessing the quality of a colocalization-based classifier, the
number of unidentified clusters for each class is an important
quality indicator.

Overall, our observations on both real data and the two syn-
thetic image series clearly support the PCC coefficient as the
method of choice to determine colocalization in this work.

Fig. 2 Comparison of four different correlation coefficients. The values
of Pearson correlation coefficient (solid), mutual information (dashed),
Mander’s overlap coefficient (dotted), and intensity correlation quotient
(dash-dotted) are plotted against the percentage of red pixels over-
lapping with green pixels. (A) The ratio of background versus foreground
pixels is 1 : 1. It can be seen, that only PCC and ICQ indicate anti-coloca-
lization. (B) The ratio of background versus foreground pixels was
increased to 1000 : 1 for a further test. This high proportion of back-
ground pixels produces very high ICQ values and very low MI values,
making them uninformative. PCC adapted to the new ratio, whereas
MOC does not change, as it does not consider the probability of the
colocalization.

Paper Analyst

2364 | Analyst, 2015, 140, 2360–2368 This journal is © The Royal Society of Chemistry 2015

Pu
bl

is
he

d 
on

 0
9 

Fe
br

ua
ry

 2
01

5.
 D

ow
nl

oa
de

d 
by

 R
uh

r 
U

ni
ve

rs
ita

t B
oc

hu
m

 o
n 

17
/0

3/
20

15
 0

8:
20

:3
8.

 
View Article Online

http://dx.doi.org/10.1039/c4an02153c


3.2. Supervised classification of cell images

Subsequent to identifying best matching clusters for all fluo-
rescence channels, these clusters were used to extract repre-
sentative training spectra for training a supervised classifier.
As shown in Fig. 3A–D, the colocalization provides a best
matching cluster for every organelle, in this case the nucleus
in blue and the lipid droplets in red. By superimposing these
clusters with the corresponding fluorescence color channels
an area of overlap appears (shown in yellow), which is the
main goal of this procedure: using this as a mask to recruit
the underlying spectra from the Raman image produces a
relatively homogeneous data set. The mean spectra of the
training data sets for lipid droplets, nucleus and the rest
class (consisting of all remaining organelles and the cyto-
plasm) are shown in Fig. 4. The spectra gained from the

colocalization method are used as training data for a random
forest classifier30 using 300 trees.

Note that in Fig. 3, the best matching clusters as well as the
agreement between random forest versus fluorescence based
segmentations are indicated by their PCC. In order to
additionally assess the statistical significance, we computed
p-values based on the hypergeometric distribution underlying
randomly scrambled pixels as a null hypothesis.26 For all clus-
ters in our dataset, this p-value turns out to be 0, indicating
that the correlation is significantly different from randomly
scrambled pixels and therefore rejecting the null hypothesis of
random overlap.

3.3. Validation of classification results

In general, supervised classifiers can be validated in a straight-
forward manner using different variants of cross-validation
such as leave-one-out, k-fold, or Monte-Carlo cross-validation.
However, in the case of vibrational microspectroscopy, training
data are in a sense more structured because each sample con-
tributes not one, but a large number of training spectra for
each class. In other words, each class in the training data set
is further subdivided into samples (see Fig. 5). In this situ-
ation, an important question to be addressed through a suit-
able validation scheme is whether spectral variability between
samples – e.g. due to variability during sample preparation – is
a potential confounding factor when classifying for subcellular
compartments. Note that this question is generally not
addressed by conventional cross validation. To illustrate this,
assume an “outlier” sample where all spectra are biased, e.g.
through a strong baseline effect affecting all spectra from the
sample. As spectra from this same sample will be contained in
both the training and the validation set, they can be classified
with high accuracy during cross validation. However, in case

Fig. 3 Colocalization of Fluorescence with HCA and Random Forest. (A)
The best matching clusters for nucleus (blue) and lipid droplets (red). (B)
The corresponding fluorescence image. (C) The overlay (yellow) of the
LD fluorescence color channel (red) and its best matching cluster
(green), colocalized with a PCC of 0.79. (D) The overlay of the nucleus
fluorescence color channel and its best matching cluster, colocalized
with a PCC of 0.93. (E) The false color image produced by the RF trained
on the spectra derived from C&D. (F) The corresponding fluorescence
image. (G) The overlay of the LD fluorescence color channel and the
corresponding RF class, colocalized with a PCC of 0.7. (H) The overlay of
the nucleus fluorescence color channel and the corresponding RF class,
colocalized with a PCC of 0.96.

Fig. 4 Mean spectra of organelles in the training data set. Lipid dro-
plets, nucleus, and the rest class, consisting of the other organelles and
the cytoplasm, are presented. These spectra were automatically col-
lected by the colocalization method to obtain a homogeneous data set
for training a random forest.
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no spectra from the biased sample are contained in the train-
ing data set, classification of the biased spectra will fail during
validation.

In order to validate our random forest classifiers appropri-
ately with regard to sample variability, we performed validation
using two different approaches (Fig. 5). First, we performed
conventional k-fold cross validation (k = 6) on training data
obtained from all six available samples. Next, we performed
leave-one-out cross-validation on a per sample basis, i.e., the
validation set was established from all spectra belonging to
one particular sample (see Fig. 5 for an illustration). Both
approaches lead to nearly identically high accuracies. In order
to simulate high spectral variability between samples, we artifi-
cially perturbed all spectra in one of the six samples, and re-
evaluated both types of cross-validation. Remarkably, conven-
tional cross-validation was hardly affected by this artifact.
While the maximal accuracy of the two versions was identical
(100%) and the mean was similar at least (99.5% for k-fold vs.
91% for sample-based), the minimal accuracy differed clearly
as it was 99.1% for k-fold and only 55% for leave-one-sample-
out. Compared to conventional cross validation, this indicates
that leave-one-sample-out provides a more realistic assessment
of the quality of a spectral classifier that also assesses spectral
variability between samples, as there is no overlap of data from
the same measurement between the validation and the train-
ing data set.

Nonetheless, the classifier achieved sensitivity and pre-
cision values of 97–100% and an accuracy of 99.3% on the
original dataset, proving the reliability and consistency of its
results and that the colocalization method did produce suit-
able training data sets. Interestingly, these values for the

classifier trained with spontaneous Raman spectral data sets
are higher than that of the classifier trained with CARS
results.4 This can be explained in terms of higher spectral
resolution of the Raman data sets. In addition, the current
Raman spectra provide more spectral information (700–1800
and 2700–3100 cm−1) than that of CARS spectra
(2700–3000 cm−1). The data set involving Golgi, ER, peroxi-
somes and mitochondria achieves a per-sample cross vali-
dation accuracy of 91.2%.

Furthermore, the random forest was additionally tested
towards its ability to reproduce the results of fluorescence. The
degree of correlation between the organelle localization pre-
dicted by the random forest and the fluorescence is presented
on one of these cells (see Fig. 3E–H), where a high correlation
between the results of the two methods can be seen. While in
this case a PCC of 0.96 for the position of the nucleus could be
observed, the average on 71 cells was 0.86 (standard deviation
0.08). Even when this random forest was tested on a colon
cancer cell line (HT29), although being trained on MIA PaCa-2
pancreatic cancer cells, the correlation was at least 0.6 for both
organelles on average. This proves the quality of the supervised
classifier in reproducing the fluorescence images without the
necessity of using labels or other chemical alterations itself.

3.3.1 Relevance of performing HCA. In order to assess the
relevance of using training spectra obtained from the overlap
between fluorescence foreground and the best matching
cluster, we trained a classifier based on spectra from fluo-
rescence foreground positions for nucleus and lipid droplets,
without any utilization of HCA. In this setting, a global
threshold in the fluorescence images was determined using
the well-established method of Otsu.31 As it turns out, the

Fig. 5 Comparison of conventional and sample-based leave-one-out cross validation. Upper left. For conventional leave-one-out cross validation
each validation round uses one data point from the original training data set for validation, while the remaining data points are used for training.
Lower left. In leave-one-sample-out cross-validation the validation data set always consists of all spectra from a complete sample, whereas training
data are recruited from all remaining samples. Confusion matrices. The confusion matrices are based on six measurements including training spectra
of Lipid Droplets, Nucleus and Rest class. Artificially perturbing spectra in one sample are hardly visible in conventional k-fold cross-validation
(upper matrices). In leave-one-sample-out validation, however, sensitivities for different organelles are strongly affected (lower right matrix).
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accuracy in leave-one-sample-out cross validation drops from
99.3% to 80% in this setting, while the average PCC between
the predicted nucleus position and the unthresholded nucleus
fluorescence drops from 0.97 to 0.62 (refer to ESI Fig. 5† for an
example). This can be explained by mismatches in the fluo-
rescence foreground and the best matching cluster, which
seem to be unavoidable and not correctable by registration
(see ESI Fig. 3†). Obviously, the utilization of HCA avoids false
training spectra in the training data set as also indicated by
ESI Fig. 4† and thus leads to significantly higher accuracy.

3.4. Organelle specificity, cell line specificity, and
confounders

Beside the specificity with respect to subcellular organelles,
Raman spectra may also distinguish other conditions. To
assess this, we trained classifiers to distinguish subcellular
organelles of different cell lines. As it turns out, organelles of
MIA PaCa-2 cells are spectrally distinguishable from their
counterparts in HT29 cells (ESI 1,† classifier C1). Furthermore,
a classifier may distinguish spectra from the non-cellular sur-
roundings of samples from the two cell lines (classifier C2).
However, as classifier C3 indicates, Raman spectra, in particu-
lar those observed in areas not covered by any cell, might as
well reflect different experimental conditions such as fluctu-
ation of laser power or different laser focus. Yet, the transfer-
ability of the organelle classifier between cell lines described
above suggests that the spectral differences between different
organelles are sufficiently big not to be overshadowed by the
spectral differences between cell lines or instrumental con-
ditions. Related phenomena regarding fluorescence signals in
non-cellular surroundings have recently been observed for
fluorescence markers of subcellular components.32,33

While subcellular organelles and cell types are biologically
relevant factors, spectral classifiers may also at the same time
distinguish factors that are commonly considered confoun-
ders. For example, two different days of experiment can be dis-
tinguished in spectra from areas not covered by cells (classifier
C3). For details on the aforementioned classifiers, we refer to
ESI 1.†

4. Conclusion

Our approach extends label-free microscopy for live cell
imaging in several directions. It can be seen as the first appli-
cation of Raman microscopy following a completely supervised
paradigm. Furthermore, our approach predicts a crisp segmen-
tation, which makes the result accessible to cross-validation,
while soft segmentations are difficult to validate quantitatively.
Along the line of quantitative validation, we have shown that
sample-based cross validation may uncover problematic effects
of spectral variability in the training data and should be pre-
ferred as a more realistic assessment of classification power.
The results shown in Fig. 5 clearly indicate that leave-one-
sample-out cross validation can uncover the usage of unsuita-
ble samples that would have stayed hidden if conventional

k-fold cross validation had been applied. More generally, leave-
one-sample-out validation as a more rigid validity measure
may also indicate whether the number of samples in the train-
ing data set is sufficient to match the spectral variability
between samples. At the same time, the ratio of unidentified
best matching clusters for each class should be taken into
account when assessing the quality of a classifier. While it
would be of interest for future work, currently no objective and
quantitative validation scheme for either unsupervised or
supervised soft segmentations is available, neither on a per-
spectrum nor on a per-sample basis.

Beside the specificity towards organelles, we could demon-
strate that Raman spectra are at the same time specific
towards other factors, including factors that are commonly
considered as confounders. We also find that Raman subcellu-
lar classifiers are transferable (with a loss of accuracy), which
has been an issue of investigation recently for fluorescence-
based approaches.34 As the two cell lines under consideration
are both epithelial cells, it may need to be answered in the
future whether classifiers are also transferable to less similar
cell types, for instance stem cells or immune cells. It may also
be of future relevance to use our colocalization approach to
distinguish cell types, which may be a useful tool for Raman
(or CARS) based cell sorting.

Both our present case study of identifying nuclei and lipid
droplets, as well as the previous study of identifying other cel-
lular compartments4 utilizing our novel colocalization scheme,
support the claim that colocalization approaches are an impor-
tant ingredient for obtaining label-free microscopy protocols.
Beyond the identification of cellular compartments, colocaliza-
tion schemes may in general also be useful for resolving tissue
structure. In fact, colocalization studies between immuno-
histologically stained tissue sections and corresponding IR or
Raman microscopic images promise a label-free alternative to
immunohistochemistry, which is an important tool for tissue
diagnostics.35 Yet, carrying our automated colocalization
approach from cells to tissue requires to deal with artifacts of
fluorescence microscopy, which are much more pronounced in
tissue than they are in cells.36

Just as the quantitative approaches for colocalization in
fluorescence microscopy helped to obtain more reliable con-
clusions from fluorescence-based studies, our colocalization
scheme to align observations between fluorescence and
Raman microscopic images promises an objective and highly
reproducible approach for label-free microscopy. As correlating
observations on one sample across different types of micro-
scopes has gained popularity recently,19,37 colocalization
measures provide objective and quantitative means to correlate
observations in settings involving other combinations of
microscopes.

Finally, utilizing colocalization measures provides further
support to utilize hierarchical clustering in a more advanced
manner. Conventionally, the dendrogram of hierarchically
clustered image spectra is cut “horizontally” to obtain a seg-
mentation into a fixed number of clusters. In Zhong et al.38

however, it has been shown by one of the authors that cutting
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dendrograms through “non horizontal” cuts yields biologically
more meaningful segmentations for IR image spectra. As our
newly contributed colocalization scheme generally also ident-
ifies such non-horizontal cuts, the present study supports this
claim also for Raman spectral image segmentation.
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