
www. biophotonics-journal.orgJournal of

BIOPHOTONICS

REPRIN
T



FULL ARTICLE

It’s in your blood: spectral biomarker candidates
for urinary bladder cancer from automated FTIR
spectroscopy

Julian Ollesch1, Margot Heinze1, H. Michael Heise1, Thomas Behrens2, Thomas Brüning2,
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1. Introduction

Urinary bladder cancer (UBC) is one of the current
major health burdens worldwide [1, 2]. As major risk
factors, smoking and occupational exposure to toxins
as e.g. aromatic amines and polycyclic aromatic hy-
drocarbons (PAH) were identified. Complementa-
rily, infectious diseases as for example schistosomia-
sis contribute to the risk in developing countries [3,
4]. Men are roughly three times more affected than

female patients. When detected and treated at an
early stage, a five-year survival rate of more than
70% can be achieved [5]. But, recurrent cancer is a
grave issue [5]. UBC patients are required to under-
go repeated cystoscopies in tight intervals of ap-
proximately two months. Cystoscopy itself is a pain-
ful procedure bearing the risks of bleeding,
subsequent infection or inflammation, bladder per-
foration, or urethral stricture.
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Blood samples of urinary bladder cancer (UBC) patients
and patients with urinary tract infection were analysed
with advanced automated high throughput Fourier trans-
form infrared (HT-FTIR)-spectroscopy. Thin dried film
samples were robotically prepared on multi-well titer
plates (MTP) for absorbance measurements in transmis-
sion mode. Within the absorbance, 1st and 2nd derivative
spectra of serum and two plasma preparations, discrimi-
native patterns were identified and validated using bioin-
formatic tools. The optimal spectral resolution for data
acquisition was determined. An accurate discrimination
of the patient groups was achieved with three different
independent spectral variable sets. The HT-FTIR blood
test may support future clinical diagnostics.

Dry robotically prepared blood sample films (A) were
analysed with automated HT-FTIR spectroscopy (B) to
identify and validate spectroscopic biomarker candidates
for urinary bladder cancer (UBC) (C).

* Corresponding author: e-mail: gerwert@bph.rub.de, Phone: +00 49 234 32 24461, Fax: +00 49 234 32 14238

J. Biophotonics 7, No. 3–4, 210–221 (2014) / DOI 10.1002/jbio.201300163



Therefore, a reliable detection based on a simple,
minimally invasive procedure would relieve the pa-
tient from strain, and at the same time would in-
crease the chance for a successful therapy.

A reliable diagnostic test based on blood analysis
would comply with this demand. Compared with cy-
stoscopy, drawing a blood sample definitely requires
less time and resources with less impact on the pa-
tient. Therefore, if a specific blood based test could
confirm or avert an initial UBC suspicion, the num-
ber of more invasive examinations performed on the
patient could be reduced.

Several potential blood-based biomarker candi-
dates for UBC have been previously described [6–
14]. Thus, an analysis of the complex marker candi-
dates in their entirety using Fourier-transform infra-
red (FTIR) spectroscopy of blood samples in combi-
nation with disease pattern recognition (DPR) was
demonstrated as a reasonable alternative [15].

The use of FTIR spectroscopy as a high through-
put technology in combination with 96 well multi
well titer plates (MTP) has been established [16–19],
although the sample throughput as compared with,
e.g., fluorescence based techniques is comparably
low. Contrastingly, the FTIR absorbance spectrum of
a biofluid sample reflects the individual biochemical
patient status [20, 21]. No additional chemistry such
as labelling or the introduction of markers is re-
quired for the simultaneous acquisition of the com-
plex proteome, lipidome, and metabolome data.
With specific bioinformatics, precise and multipa-
rametric quantitative clinical chemistry assays for a
single sample were demonstrated, and disease speci-
fic spectral band patterns had been identified and
validated [19–32].

An improved and automated technology for the
DPR approach was recently developed [15]. A pos-
sible user impact during analysis of the sample was
ruled out by a robotic sample preparation. Thereby
artefacts, usually encountered with dry film prepara-
tions, were excluded. Absorbance spectra were re-
corded by an automated high-throughput (HT)-
FTIR system, thus achieving extreme spectral repro-
ducibility. User interference – often described by
e.g. “visual inspection” or “manual baseline correc-
tion” – was avoided by the implementation of auto-
mated bioinformatics routines without manual user
input. Strict and efficient Monte Carlo cross-valida-
tion (MCCV) schemes were introduced for valida-
tion.

Here, we present improved results of our still on-
going study on the identification and validation of
spectral biomarker candidates obtained from UBC
patients versus patients with urinary tract infection,
which are our clinically relevant control group for
this study.

Eligible patients were referred to our collaborat-
ing clinics by urologists outside of our study for

transurethral resection (TUR) of urinary bladder tis-
sue. TUR is performed during cystoscopy, causes dis-
comfort for the patient, and bears the risks of bleed-
ing, subsequent inflammation, thrombosis, embolism,
bladder perforation or urethral stricture. Three to
four days of stationary hospitalization are usually re-
quired for this medical procedure. In roughly a third
of our study participants, a urinary tract infection,
which could be treated with antibiotics, gave rise to
the initial suspected diagnosis of cancer. For these
patients, a highly specific negative blood test would
have been a cost-efficient method to avoid a more
invasive follow-up and to preserve hospital capaci-
ties. In particular, UBC patients under therapy, who
undergo repeated cystoscopy to screen for recurrent
bladder cancer, would greatly benefit from a less in-
vasive method.

In the first report on our study, we presented an
accurate and sensitive, but yet unspecific procedure
to discriminate between UBC and control patients
based on infrared spectra of blood serum and two
plasma preparations [15]. Now, with a larger patient
cohort available, a statistically significantly increased
accuracy, sensitivity, and, in particular, an increased
specificity of the patient class discrimination were
achieved with the three blood samples, which were
collected from each patient and processed as de-
scribed before: serum, ethylene diamine tetraacetic
acid (EDTA), and citrate stabilized plasma. This
protocol takes into account expected differences be-
tween samples of induced coagulation versus coagu-
lation prevention with two chemicals, which may
mask specific spectral absorption bands. Absorbance
sample spectra were combined with the respective
1st and 2nd derivative spectra to form one cumulative
data vector, which also contains the expected subtle
band shifts as possible indicators of the patient’s
health status.

As described in the earlier report, particular care
was applied to select discriminative features from
the spectral vectors. In addition to the previously ap-
plied iterative random forest (RF) algorithm, which
exploited the RF intrinsic Gini-importance of fea-
tures in repeated calculations on data subsets [15]
(see below), a syn-entropy analysis method to identi-
fy the features of maximum relevance and minimum
redundancy (MRMR) [33, 34] was applied.

The patient prediction was performed using a
classifying linear discriminant analysis (LDA) and an
advanced ensemble random forest classifier. The
LDA required only relatively low computational
power compared with the RF algorithm. The RF is
reliable but computationally intensive due to the
construction of the classifier. It is a collection of de-
cision trees built from random selections of spectral
features [35]. Internal cross-validation leads to a col-
lection of correctly classifying decision trees calcu-
lated from randomly selected data variables. A ma-
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jority vote of the included trees is interpreted as the
classifier prediction. For the spectral features in-
cluded in the RF, the so-called Gini importance was
calculated, which is useful to exclude uninformative
features from classification [15, 18, 36, 37]. Further-
more, RFs were used as ensemble classifiers of mul-
tiple RFs predicting validation datasets based on ma-
jority votes of the combined RFs.

The earlier report was based on a class-unba-
lanced study cohort of 89 UBC patients versus 46
controls. The distortive effects of unbalanced train-
ing data were now evaluated and removed. From
the total patient population, even sets of definite
UBC patients versus definite non-cancer control pa-
tients were randomly assembled. Thus, the validation
results were largely more balanced considering sensi-
tivity and specificity. As a result, the accuracy of
class prediction was significantly improved.

The sample throughput rate was increased by a
reduction of the spectral resolution during the meas-
urement. Thereby, the minimum resolution neces-
sary for accurate class distinction was determined as
4 cm�1, thus doubling the previously reported sam-
ple throughput, and reducing the number of total
spectral variables per patient by a factor of two.

2. Experimental

The study reported here is a continuation of our
study on UBC with all experimental procedures de-
scribed there [15], whereas differences to the pre-
vious protocols are discussed in detail below. The
workflow (Figure 1) comprised quadruplicate spot-
ting of blood preparations, HT-FTIR-measurement,
spectral preprocessing, feature selection, and the va-
lidation of two different classifiers (Figure 1).

2.1 Patient population

Strictly defined standard operating procedures
(SOP) were developed with the PURE Scientific
Epidemiological Study Centre of the IPA (Institute
for Prevention and Occupational Medicine of the
German Social Accident Insurance, Institute of the
Ruhr-Universität Bochum, Germany, member of the
research initiative PURE, Protein research Unit
Ruhr within Europe) according to the rules of Good
Epidemiological Practice. Following these protocols,
epidemiologic data were collected of patients, who
were fully informed about the study and gave their
written consent. Blood samples were collected and
processed to serum, EDTA-, and tri-sodium citrate
stabilized plasma with clinical routine equipment
(BD Biosciences, Heidelberg, Germany) obeying

strict SOPs, as reported previously [15]. The samples
were shock frozen within less than 30 min for plas-
ma, and less than 50 min after sampling for serum.
All samples were stored at �80 �C until experimen-
tal use. Using the clinical chemistry data of the parti-
cipating patients alone, no UBC specific signatures
could be identified. The established diagnosis by
combination of cytology, cystoscopy and histopathol-
ogy served as gold standard for the DPR approach.
This study complies with the applicable ethical
guidelines and was approved by the Ethical Commit-
tee of the Ruhr-Universität Bochum (Ethics vote
3674-10, Ethical Committee of the Ruhr-Universität
Bochum, Bochum, Germany).

From the total pool of participating patients, four
datasets were randomly assembled (Table 1). Set (i)

Figure 1 Workflow of sample analysis (adapted from [15]):
With each biofluid sample, four wells of a 384 well MTP
were robotically coated with a thin film. From the re-
corded four absorbance spectra, spectra containing arte-
facts were removed individually. Outlier removal, aver-
aging and normalization resulted in a representative
absorbance spectrum of each sample. After differentiation,
spectra were combined to a synthetic and patient-unique,
sequentially arranged vector, consisting of the respective
absorbance, 1st and 2nd derivative spectrum of serum,
EDTA and citrate plasma. Using these data, classification
relevant variables were identified and validated based on
the medical diagnosis.
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comprised 286 patients, 81 diagnosed non-UBC
cases, and 205 positive UBC with a tumour grade of
G2, G3 or G4 (WHO 1973), termed in the following
“UBC G2+”. Thus, papilloma and low-malignancy
grade G1, which are unlikely to secrete similar bio-
marker amounts as occurring with the advanced
grades, were excluded. At least 64 recurrent cancer
cases were included. Of 23 UBC G2+ patients, no in-
formation about recurrence was available. The spec-
tral dataset was acquired with 8 cm�1 spectral reso-
lution.

Patient set (ii) was a balanced selection of 166
patients (i). It consisted of 83 UBC G2+ patients (34
G2, 30 G3, 19 G4) and 83 control patients with uro-
cystitis or urethral infection who were free of cancer
based on the clinical and pathological diagnosis. At
least 31 recurrent cancer cases were included in the
UBC G2+ group; of 7 patients the recurrence status
was unclear. The spectral resolution was 8 cm�1.

For patient set (iii), blood samples of 50 patients
with urocystitis or urethral infection versus 50 UBC
G2+ patients were analyzed with 4 cm�1 spectral
resolution (Figure 2). The UBC G2+ group (22 G2,
17 G3, 11 G4) included 14 recurrent cancer cases.

Finally, patient set (iv) consisted of 50 control pa-
tients with urocystitis or urethral infection versus 50
definite first-time UBC G2+ patients (17 G2, 20 G3,
13 G4). The blood samples were analyzed with
4 cm�1 spectral resolution (Figure 3).

2.2 High-throughput FTIR spectroscopy

Automated HT-FTIR-measurements (Vertex 70v
FTIR spectrometer, HTS-XT extension, Twister ro-
botic plate feeder, Bruker Optics GmbH, Ettlingen,
Germany) of robotically spotted blood serum and
plasma (50 nl each) in concentric circles of 217

200 pl spots per well (instrumentTwo, M2 Automa-
tion GmbH, Berlin, Germany) on 384 well silicon
MTPs (Bruker) were performed with extreme repro-
ducibility as described [15].

In FTIR spectroscopy, interferograms are re-
corded, averaged and converted to spectra by Four-
ier transformation. The spectral resolution is defined
by the length of the recorded interferogram, which
is proportional to the instrument scan time [38]. To
reduce the measurement time and dimensionality of
the dataset, the spectral resolution of the data acqui-
sition was reduced from the earlier reported 2 cm�1

to 4 cm�1 and 8 cm�1, respectively. In theory, a re-
duction of measurement time by the respective fac-
tors of two and four was expected. All further instru-
ment parameters remained unchanged.

2.3 Data preprocessing

The absorbance spectra of a sample were collected
in quadruplicate in transmission mode. Trace spec-
tral contributions of atmospheric water vapour were
removed by scaled subtraction. Remaining high fre-
quency noise was filtered out by means of a Gaus-
sian low pass filter. Outlier removal, averaging,
adaptive iteratively penalized least squares (airPLS)
baseline correction, derivation and spectral combina-
tion were performed as reported [15].

Considering the spectral resolution of the dataset,
the noise filter was adjusted to 6 cm�1 when applied
to the 4 cm�1 resolution spectra, and to 8 cm�1 with
8 cm�1 resolution data. The 1st and 2nd derivation of
the 4 cm�1 resolution absorbance spectra was calcu-
lated with Fourier transformation and low pass filter-
ing at 6 cm�1 and 8 cm�1, respectively [15]. Spectra
with 8 cm�1 resolution were derivated with 10 cm�1

and 12 cm�1 filtering.

Table 1 Datasets randomly selected from the total patient pool. Sets (i) and (ii) were analysed with a spectral resolution
of 8 cm�1, (iii) and (iv) with 4 cm�1.

dataset (i) (ii) (iii) (iv)

m f m f m f m f

patients 286 166 100 100
222 64 129 36 74 26 78 22

av.age �s 71 � 10 72 � 10 72 � 12 71 � 10 71 � 11 72 � 11 71 � 11 73 � 12
controls 81 83 50 50

61 20 63 19 36 14 38 12
UBC G2+ 205 83 50 50

161 44 66 17 38 12 40 10
recurrent 64* 31** 14 0

* 23 missing information if recurrent
** 7 missing information if recurrent
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For each patient, a representative spectral vector
was assembled from all three blood preparations, as
documented before [15]. The absorbance spectrum
of serum was concatenated with its 1st and 2nd deri-
vative, followed by the corresponding data of EDTA
and citrate stabilized plasmas (Figure 1). This re-
sulted in a 11,493 dimension vector of wavenumber-
intensity pairs with a datapoint spacing of 1 cm�1

(@ 2 cm�1 resolution). Hence, we report vectors re-
duced to 5751 and 2871 features with 2 cm�1 and
4 cm�1 spacing recorded with 4 cm�1 and 8 cm�1 in-
strumental resolution, respectively.

2.4 Feature selection

The term “feature selection” comprises a dimension-
ality reduction of the classification problem in a way
that redundant and uncorrelated information is re-
moved and only the most discriminative data are
preserved. The algorithms applied here were shown
to perform well in nonlinear multivariate classifica-
tion problems [15, 34, 37].

For the comparison with previous findings, the
set of fifteen wavenumber-intensity pairs identified
previously as the set of optimum classification [15]
was evaluated for classification performance on the
actual datasets. If the spectral resolution of the data-
sets did not match, nearest neighbours to the pre-
viously found wavenumbers were selected to repre-
sent the corresponding spectral band.

A second feature set specific to the respective
spectral data was determined by a maximum rele-
vance, minimum redundancy (MRMR) approach
[33, 34]. This algorithm identifies spectral variables
depending on the discriminative power and the
redundancy of information. It was performed with
the algorithm as published and can be downloaded
from http://www.mathworks.com/matlab central/fi-
leexchange/14916 (September 10, 2013). Each data-
set was analysed for the 100 most discriminative fea-
tures. Stepping down with the MRMR ranking from
the single top ranked feature to the bottom hundred
ones, the highest-ranked feature set performing with
highest average accuracy in 1000 independent leave-
one-third-out MCCV with LDA classifiers was iden-
tified as the MRMR selection result, requiring only
relatively low processing power.

Figure 2 Spectral overview and se-
lected features of dataset (iii), 50
UBC G2+ patients including 14 re-
current cases, 50 controls. Spectra
of serum (A), of EDTA stabilized
plasma (B), and sodium citrate sta-
bilized plasma (C) are shown, di-
vided in the spectral regions C––H-
stretching absorbance (I), absor-
bance fingerprint (II), 1st deriva-
tive of the C––H stretching absor-
bance region (III), 1st derivative of
the fingerprint absorbance region
(IV), 2nd derivative of the C––H
stretching absorbance (V), and the
2nd derivative of the fingerprint ab-
sorbance region (VI). The respec-
tive regions (I–II, III–IV, and V–
VI) were scaled for optimal dis-
play. Green: 15 features reported
[15], blue: MRMR algorithm re-
sults on this dataset, red: RF-algo-
rithm results on this dataset (com-
pare with Table 4 and Figure 4D).
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With regard to processing power, the iterative
wrapper algorithm for random forest based feature
selection that we successfully applied before [15], is
vastly more demanding. Briefly, a random forest can
be used to determine the Gini-importance of a spec-
tral feature for correct classification [18, 36, 37, 39].
The selection process was repeatedly performed on
MC derived data subsets comprising of 80% of the
total dataset, resulting in a selection frequency map
of each identified feature. For each subset, the cumu-
lative Gini-importance of all spectral features was de-
termined from 192 random forests, the 20% least im-
portant features excluded from the dataset, and the
next 192 RFs were calculated obeying strict leave-
one-third-out MCCV procedures. This procedure was
repeated until only 5 features were left. Based on the
average accuracy determined on each 192 MCCVs,
the best predicting set was registered into a pool of
selected features. This pool was analysed by stepping
down in search of a minimum selection frequency
threshold. For each threshold, the identified feature
sets were individually validated for optimum average
accuracy in a 1000 fold LDA leave-one-third-out
MCCV to determine the average accuracy. The best
performing feature set determined the threshold,
which is given in the according Tables 2–5.

The identified classification-characteristic features
were checked for agreement with spectral contribu-
tions of the silicon substrate and the sample addi-
tives, as e.g. citrate, without apparent overlap.

Figure 3 Spectral overview and se-
lected features of dataset (iv), 50
UBC G2+ patients excluding re-
current cases, 50 controls. Spectra
of serum (A), of EDTA stabilized
plasma (B), and sodium citrate sta-
bilized plasma (C) are shown, di-
vided in the spectral regions C––H-
stretching absorbance (I), absor-
bance fingerprint (II), 1st deriva-
tive of the C––H stretching absor-
bance region (III), 1st derivative of
the fingerprint absorbance region
(IV), 2nd derivative of the C––H
stretching absorbance (V), and the
2nd derivative of the fingerprint ab-
sorbance region (VI). The respec-
tive regions (I–II, III–IV, and V–
VI) were scaled for optimal dis-
play. Green: 15 features reported
[15], blue: MRMR algorithm re-
sults on this dataset, red: RF-algo-
rithm results on this dataset (com-
pare with Table 5 and Figure 5D).

Table 2 Classifier evaluation of spectral marker candi-
dates of unbalanced dataset (i), 8 cm�1 resolution, 205
UBC G2+ versus 81 control patients (set: feature set, #f:
number of features, cf: classifier, acc: accuracy/%, sens:
sensitivity/%, spec: specificity/%).

set* #f cf acc sens spec

RF [15] 15 LDA 50 � 2 98 � 2 2 � 2
RF [15] 15 RF*** 51 � 1 98 � 2 4 � 4
RF** 49 LDA 54 � 3 89 � 5 19 � 6
RF** 49 RF*** 54 � 2 97 � 2 11 � 4
MRMR 24 LDA 22 � 26 40 � 47 3 � 5
MRMR 24 RF*** 51 � 2 97 � 2 4 � 4

* datasets as published in [15] or individually calculated
on the dataset with RF or MRMR algorithm.
** features were selected in �9/45 selection cycles
*** average values of 20 MCCV steps with ensembles of
1001 RFs
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2.5 Classification

Two classifiers with different processing power re-
quirements were applied. The classifying linear dis-

criminant analysis (LDA), which requires only rela-
tively little computing resources was performed
using the Matlab provided routine ‘classify’, with à
priori class membership estimation and a linear dis-
criminant function [40, 41].

Second, a complex ensemble random forest clas-
sifier requiring advanced computational resources
was applied [15]. In brief, a prediction is not
achieved directly by the majority vote of the trees in
a single random forest; rather, an ensemble of 1001
random forests was used for prediction based on the
majority vote of the included random forests.

For all validation procedures, a strict leave-one-
third-out MCCV scheme was obeyed, in which clas-
sifiers were trained on a randomly selected 2/3 of
the dataset to predict the left-out 1/3 subjects.

In line with common practice, the accuracy was
defined as percentage of correct classifications,
whereas sensitivity reflects the percentage of true
positive (UBC G2+) predictions among all cancer
positive predicted patients, and specificity provides
the percentage of true negative (non-UBC control)
patients among all negative predicted patients.

2.6 Bioinformatics environment

Calculations of the random forest routines were per-
formed within the Matlab environment, version
2012a and version 2013a with the R-project based
[42] Matlab port (downloadable from http://code.-
google.com/p/ran-domforest-matlab/, January 30,
2013) on a High-Performance Computing Server
Supermicro SYS-5086B with 8x Intel1 Xeon1 West-
mere EX (E7-8837, 2.66 GHz, 8-Core), 512 GB
RAM. The linear discriminant analysis (LDA) was
performed with the internal Matlab function (‘classi-
fy’). Final cross-validation and MRMR feature selec-
tion were performed on office PCs equipped with In-
tel Core2Quad CPU Q9650@3.0 GHz, 8 GB RAM
running Matlab 2012a, and Intel Core i7-3770 CPU
@ 3.40 GHz, 8 GB RAM running Matlab 2013a.

3. Results and discussion

The applied preparation procedures, spotting and
measurement setup were shown to generate highly
reproducible spectra of bodyfluids [15]. Spectral mar-
ker candidate bands for the discrimination of UBC
from control patients with urocystitis and urinary
tract infection were identified, based on subtle spec-
tral differences. With two classification systems, the
feature set showed a high sensitivity of 93%, but
only a low specificity of 46% for the disease discri-

Table 3 Classifier evaluation of spectral marker candi-
dates of balanced dataset (ii), 8 cm�1 spectral resolution,
83 UBC G2+ including recurrent cancer versus 83 control
patients (for legend see Table 2).

set* #f cf acc sens spec

RF [15] 15 LDA 55 � 6 55 � 10 55 � 10
RF [15] 15 RF 56 � 5 53 � 11 60 � 10
RF** 4 LDA 66 � 6 67 � 9 65 � 9
RF** 4 RF 67 � 6 66 � 10 68 � 10
MRMR 3 LDA 67 � 5 70 � 8 63 � 9
MRMR 3 RF 68 � 5 71 � 9 65 � 9

* datasets as published in [15] or individually calculated
on the dataset with RF or MRMR algorithm.
** features were selected in �45/50 selection cycles

Table 4 Classifier evaluation of spectral marker candi-
dates of balanced dataset (iii), 4 cm�1 resolution, 50 UBC
G2+ including 14 recurrent cases versus 50 control pa-
tients (for legend see Table 2).

set* #f cf acc sens spec

RF [15] 15 LDA 75 � 7 75 � 11 75 � 11
RF [15] 15 RF 84 � 5 82 � 9 86 � 9
RF** 6 LDA 88 � 5 93 � 6 83 � 9
RF** 6 RF 89 � 5 91 � 8 88 � 9
MRMR 7 LDA 89 � 5 93 � 6 84 � 9
MRMR 7 RF 92 � 5 93 � 6 92 � 8

* datasets as published in [15] or individually calculated
on the dataset with RF or MRMR algorithm.
** features were selected in �26/50 selection cycles

Table 5 Classifier evaluation of spectral marker candi-
dates of balanced dataset (iv), 4 cm�1 resolution, 50 UBC
G2+ excluding recurrent cancer versus 50 control patients
(for legend see Table 2).

set* #f cf acc sens spec

RF [15] 15 LDA 73 � 7 72 � 11 74 � 10
RF [15] 15 RF 80 � 8 78 � 10 81 � 11
RF** 6 LDA 85 � 5 90 � 7 80 � 9
RF** 6 RF 88 � 4 87 � 8 88 � 8
MRMR 2 LDA 88 � 3 94 � 6 83 � 9
MRMR 2 RF 90 � 4 93 � 5 86 � 8

* datasets as published in [15] or individually calculated
on the dataset with RF or MRMR algorithm.
** features were selected in �37/50 selection cycles
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mination of the then available data of only 135 study
participants [15].

For further validation, we proposed the investiga-
tion of a larger patient cohort with a balanced class
distribution. The following results were obtained
along these lines.

To analyse large datasets in due time requires
high throughput capabilities. Originally, we reported
our system set-up operating with a spectral resolu-
tion of 2 cm�1. To increase the sample throughput,
the scanning time per sample had to be reduced.
Thus, reducing the instrumental resolution by half
would halve the required interferogram in length.
Therefore, the spectral resolution was limited to
8 cm�1 with a theoretical gain of a fourfold sample
throughput. A full 384 MTP was entirely scanned
within 7 h as compared with 21 h at a resolution of
2 cm�1 and the further reported parameters [15]. At
4 cm�1 resolution, the scanning time was still re-
duced to 12 h, roughly doubling the original sample
throughput. Thereby, it became apparent that the re-
maining procedures of data acquisition, interfero-
gram processing, and mechanics contribute a fortiori
to the measurement time with increased speed of
the spectral acquisition.

The resolution reduction was accompanied by a
reduction in the number of spectral variables of the
dataset from 11,493 wavenumber-intensity pairs per
patient to 5,751 (4 cm�1) and 2,871 (8 cm�1), which
further reduced the computer time required for cal-
culation.

The continued patient recruitment allowed us to
select among the participants UBC cases of reliably
diagnosed, unambiguously manifested cancer of
grades G2, G3, and G4. Early and pre-cancer-states
like papilloma, which may be too small to secrete
detectable amounts of biomarker molecules into the
blood, were excluded to assess the principal poten-
tial of FTIR spectroscopy to discriminate UBC from
a urinary tract infection. Thus, the first patient group
analysed consisted of (i) 81 control and 205 UBC
G2+ patients, including 64 recurrent cancer cases, a
total of 286 patients.

Cross-validation showed that on this dataset, dis-
tinguishing controls from UBC patients was possible
with high sensitivity, but a rather poor specificity re-
sulting in an average accuracy of 47% with both
classifiers and all three feature sets (Table 2).

Considering the again existing imbalance of UBC
and control patients, both classifiers may have given
overdue weighting to the UBC class, resulting in the
apparent low specificity. Thus, a balanced control
and UBC patient set was selected for the analysis:
dataset (ii) consisted of 166 patients, 83 controls ver-
sus 83 UBC G2+ patients.

On the previously identified fifteen spectral fea-
tures, LDA and RF classifier achieved an accuracy
of 55 � 6% and 56 � 5%, respectively. A t-test

(p < 0.001) indicated an already existing significance
over ambiguity, but still, this result is far from practi-
cal applicability. Nevertheless, the increased specifi-
cities of 55 � 10% and 60 � 10% are already note-
worthy (Table 3).

Four features were identified specifically for this
dataset by the RF algorithm in �45/50 selection cy-
cles. LDA and RF classifier resulted in an accuracy
of 66 and 67 � 6%, respectively. Sensitivities of
67 � 9% (LDA) and 66 � 10% (RF) were achieved.
The specificity accounted for values of 65 � 9%
(LDA) and 68 � 10% (RF), the highest achieved
values on dataset (ii) (Table 3).

On three features identified by the MRMR algo-
rithm, both classifiers also performed comparably
well. The LDA achieved an accuracy of 67 � 5%, a
sensitivity of 70 � 8%, and a specificity of 63 � 9%.
The RF led to values of 68 � 5%, 71 � 9%, and
65 � 9%, respectively. These accuracies on MRMR
features differ significantly (p < 0.001) from an am-
biguous classification as achieved with the unba-
lanced dataset (i) (Tables 2, 3).

To evaluate whether discriminative features were
obscured by the low spectral resolution, a balanced
dataset (iii) of 50 control patients, 50 UBC G2+ pa-
tients including 14 recurrent cancer cases was ac-
quired with 4 cm�1 spectral resolution (Figure 2). On
this dataset, a clear distinction was already achiev-
able with both the LDA (accuracy of 75 � 7%) and
the RF classifier (accuracy of 84 � 5%) on the pre-
viously reported set of 15 features (Figure 2, green
lines). Remarkably, with sensitivities of 75 � 11%
(LDA) and 82 � 9% (RF), and specificities of
75 � 11% (LDA) and 86 � 9% (RF), both classifiers
outperformed the predictors we reported previously
(acc. 66 � 8%, spec. 45 � 14% LDA, acc. 68 � 7%,
spec. 46 � 18% RF [15]) especially with regard to
specificity. These improvements were statistically sig-
nificant (p < 0.001, Table 4), and the features enabled
an accurate dataset separation (Figure 4A, D).

The performance of two entirely different classi-
fiers indicates that an accurate, sensitive and specific
discrimination of UBC patients from controls on in-
frared absorption spectra of blood can be achieved
with the previously identified 15 spectral features. Re-
markably, these were identified using an unbalanced
dataset of 135 patients (89 UBC, 46 controls) which
included 38 UBC G1 stages, and two prostate carcino-
ma cases within the controls. It was argued, that the
poor specificity of the presented classifiers was most
likely due to the mismatched class sizes. Here, we pre-
sent evidence that training the applied LDA and en-
semble RF classifiers with class-unbalanced data
resulted in a generally unintended preference of
prediction, so that sensitivity outbalanced specificity.
Therefore, our data gives evidence to train these pre-
dictors exclusively on class-balanced datasets to avoid
distortions in class membership prediction.
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On a six feature set determined individually for
the dataset by the RF algorithm (threshold 26/50 cy-
cles) (Figure 2, red lines), both classifiers performed
comparably well with a respective accuracy of
88 � 5% and 89 � 5% (Table 4, Figure 4 C, D). The
MRMR algorithm identified a set of seven best dis-
criminating features (Figure 2, blue lines). Using
these, the RF classifier performed with a higher ac-
curacy of 92 � 5% versus 89 � 5% of the LDA (Ta-
ble 4, Figure 4B, D).

The validation results of all classifiers on all three
feature sets indicate a fair to superb class separabil-
ity in datasets (ii) and (iii) (Figure 4). A prediction
performance increase of 20 (LDA) and 30 percent
units (RF) on the fixed 15 feature set, along with a
comparable performance improvement using indivi-
dually calculated feature sets, indicates that in data-
set (ii) with only 8 cm�1 resolution insufficiently dis-
criminating spectral features were present. For the
analysis with the applied HT-FTIR-methodology, a
spectral resolution of at least 4 cm�1 is required for
an accurate UBC G2+ prediction.

Recurrent cancer is a serious issue with UBC [5].
Therefore, nearly half of the patients with confirmed
UBC recruited in our study suffer from a recurrent

tumour. In the following, we evaluated whether the
spectral pattern of the blood samples was distorted
by a pre-existing UBC history, using dataset (iv).
This included 50 control patients, and 50 UBC G2+
without previous cancer history. The absorbance
spectra were again recorded at 4 cm�1 resolution
(Figure 3).

With the 15 previously identified features (Fig-
ure 3, green lines), the LDA reached an accuracy of
73 � 7% with 72 � 11% sensitivity and 74 � 10%
specificity (Table 5, Figure 5A, D). Resulting in an ac-
curacy of 80 � 8%, the RF classifier performed signif-
icantly (p < 0.001) better, reaching a sensitivity and
specificity of 78 � 10% and 81 � 11%, respectively.

Six features were identified with the RF algo-
rithm specifically for this dataset (Figure 3, red
lines). The LDA performed with 85 � 5% accuracy,
90 � 7% sensitivity and 80 � 9% specificity. The RF
classifier reached an improved result with 88 � 4%
accuracy, 87 � 8% sensitivity and 88 � 8% specificity
(Table 5, Figure 5C, D).

The MRMR algorithm identified only two rele-
vant features on this dataset (Figure 3, blue lines).
We are well aware that a predictor based on such
few features may be less robust against misclassifica-

Figure 4 Using three differently selected feature sets, 50 control and 50 UBC G2+ patients including 14 recurrent cases
were well separable by LDA. For illustrative purposes, the dimensionality of the classification problem was reduced by
PCA. The LDA discriminative function separating patients based on scores of the first two principal components is shown
for (A) 15 features determined previously [15], (B) seven features determined on this dataset with the MRMR algorithm,
and (C) six features determined on this dataset with the repeated RF algorithm in �26/50 selection cycles (Table 4). (D)
The class-averaged, centred intensities and standard error of mean at the determined vibrational biomarker candidates of
control (black) and UBC G2+ (red) patients illustrate the spectral separability.
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tion of outlier patients. Spectral outliers of an indivi-
dual sample, however, have been eliminated during
preprocessing [15]. The RF classifier performed best
with an accuracy of 90 � 4%, a sensitivity of
93 � 5% and a specificity of 86 � 8%. The LDA
classifier led to similar results of 88 � 3% accuracy, a
sensitivity of 94 � 6% and 83 � 9% specificity (Ta-
ble 5, Figure 5B, D).

In total, using datasets (iii) and (iv), all classifiers
validated comparably well with 85–92% accuracy on
dataset specific features. Whether the UBC is recur-
rent appears not to affect the spectral prediction based
upon a patient’s blood sample. The identified feature
sets were obtained with distinct strategies from spec-
tral datasets of different resolution. Thus, an overlap
of wavenumber positions cannot be expected.

This finding could render an HT-FTIR-blood
analysis an attractive less invasive supplement to the
diagnostics available for UBC patients in therapy.
Currently, these patients are repeatedly examined by
cystoscopy on a regular basis to monitor therapy
progression. A spectroscopic blood test of high spe-
cificity would immediately and efficiently reduce the
amount of stress put on the patient, reduce infection
risks, and minimize hospital stays. For such an appli-

cation, the decay time of tumour-induced spectral
patterns after therapy onset has to be validated.

Unfortunately, our current patient population is
still short of a sufficient number of securely diag-
nosed recurrent UBC cases to evaluate the spectral
separability from subjects with newly developed
UBC. Judging from the small overlap of only two
among 21 discriminative features identified specifi-
cally for datasets (iii) and (iv), a certain probability
for the successful discrimination could be expected.
However, we report from an on-going study, and this
aspect will be evaluated in future.

The main findings about the existence of spectral
biomarker candidates for UBC in blood prepara-
tions [15] have been confirmed. Even more, the clas-
sification results were fundamentally improved. The
analysis provided validated results with a particularly
enhanced specificity.

4. Conclusion

Here, we demonstrated the principal existence of
marker patterns for the discrimination of manifested

Figure 5 Using three differently selected feature sets, 50 control and 50 UBC G2+ patients without recurrent cancer were
also well separable by LDA. For illustrative purpose, the dimensionality of the classification problem was reduced by PCA
in feature sets (A) and (C). The LDA discriminative function is shown for (A) 15 features determined previously [15],
(B) two features determined on this dataset with the MRMR algorithm, and (C) six features determined on this dataset
with the repeated RF algorithm in �37/50 selection cycles (Table 5). (D) The class-averaged, centred intensities and stan-
dard error of mean at the determined vibrational biomarker candidates of control (black) and UBC G2+ (red) patients
again illustrate the spectral separability.
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UBC from urinary tract infections in the FTIR ab-
sorbance spectra of blood samples from a risk collec-
tive. Finally, the discriminative power of the techni-
que for the identification of other diseases in a
broad screening approach remains to be shown with
specifically defined patient groups of appropriate
size.

The improved results of our HT-FTIR-spectro-
scopic approach to bodyfluid analysis [15] demon-
strate its practical applicability. The accurate discri-
mination of UBC from control patients was shown
on three balanced datasets with and without recur-
rent cancer cases. For each dataset, three combina-
tions of spectrally discriminative features were iden-
tified and evaluated.

A significantly (p < 0.001) better than ambiguous
patient group separability was already obtained with
a spectral resolution of 8 cm�1, corresponding to a
threefold increased sample throughput compared
with our earlier study. With our data, optimum pre-
diction quality was achieved with 4 cm�1 resolution
datasets, still equivalent to a doubled sample
throughput compared with our previously reported
procedure [15].

Using 4 cm�1 spectrally resolved data, even the
least discriminative set of spectral biomarker candi-
dates resulted in an RF classification accuracy of
80 � 8%, with 78 � 10% sensitivity and 81 � 11%
specificity. The sample preparation process and spec-
tral measurement was strictly automated as far as
reasonably achievable. Particularly, critical steps of
the thin film preparation from fluid samples were
performed by specialized robotics. Therewith, opera-
tor impact on data processing and evaluation was ru-
led out by automated procedures. Therefore, objec-
tive evidence for the existence of blood-borne
spectral biomarkers from HT-FTIR spectroscopic
analysis is given.

Further studies with a progressively increasing
patient population will support the identification of
the optimum spectral feature combinations and the
most accurate classifier. Further prediction perfor-
mance testing remains to be performed with even
larger independent datasets.
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